

DEPARTMENT: Software Engineering

Publish Your Software:
Introducing the Journal of
Open Source Software
(JOSS)

Software is essential to most research today. We know
this because we have asked researchers and examined
their outputs. A 2014 study of UK Russell Group Univer-
sities1 reports that approximately 90 percent of academics
surveyed said that they use software in their research, and
more than 70 percent said that their research would be
impractical without it. About half of these UK academics
reported that they develop their own software while in
the course of doing research. Similarly, a 2017 survey of
US National Postdoctoral Association members found
that 95 percent used research software, and 63 percent
said that their research would be impractical without it.2
An initial study of software’s role in journal articles ex-
amined three months of the journal Nature and found that
during this period, of the 40 research articles Nature pub-
lished, 32 mentioned software and averaged 6.5 software
package mentions per article.3

However, even though software is a critical part of mod-
ern research, its publication, acknowledgement, and citation are not well-supported across the
scholarly ecosystem.4 Academic publishing has not changed substantially since its inception.
Science, engineering, and many other academic fields still view research articles as the key indi-
cator of research productivity, with research grants being another important indicator. Yet, the
research article is inadequate to fully describe modern, data-intensive, computational research.

The Journal of Open Source Software (JOSS; joss.theoj.org)5 focuses on research software and
its place in the scholarly publishing ecosystem. Its goal is to make it easy for authors to publish a
paper about their software, mostly focused on the software itself, and then be credited when this
software is used based on the users citing the JOSS paper. Thus, the journal’s selling point, as
stated in the author guidelines, is as follows:

If you’ve already licensed your code and have good documentation, then we expect that it
should take less than an hour to prepare and submit your paper to JOSS.

Daniel S. Katz
National Center for
Supercomputing Applications;
University of Illinois, Urbana–
Champaign

Kyle E. Niemeyer
Oregon State University

Arfon M. Smith
Space Telescope Science
Institute

Editors:
Jeffrey Carver,
carver@cs.ua.edu; Damian
Rouson, damian@
sourceryinstitute.org

84
Computing in Science & Engineering Copublished by the IEEE CS and the AIP

1521-9615/18/$33 ©2018 IEEEMay/June 2018

 COMPUTING IN SCIENCE & ENGINEERING

JOSS is

• Built on GitHub. We use GitHub so that we can take advantage of numerous of its fea-
tures (for example, the use of issues for reviews; rapid interaction between author, re-
viewer, and editor; and notifications) and authors’ and reviewers’ general familiarity
with GitHub.

• Open access. Papers submitted to and accepted by JOSS are open access (CC-BY li-
censed), and authors retain the copyright to their work. The software components of the
publications are licensed under an Open Source Initiative (OSI) approved license.

• Intended for research software. JOSS attempts to be general to all research software,
not just for science or any single field. The main question we ask of submitters is, “Is it
likely that users of this software will want to cite it?”

• Intended to be easy to use for authors. Authors with well-documented code in a pub-
lic code repository simply need to create a directory in that repository that contains a
short paper in Markdown format; in that paper, they then declare the authors of the soft-
ware, the purpose of the software, and any needed references.

• Intended to be easy to use for reviewers. Reviewers work through a checklist of items
related to JOSS’s conflicts of interest policy, the code and documentation in the soft-
ware repository, and the software paper itself, as further discussed in the next section.

• Supported by NumFOCUS. NumFOCUS (numfocus.org) is a 501(c)(3) nonprofit that
supports and promotes world-class, innovative, open source scientific computing. It pro-
vides a forum for such projects to work through issues, and provides a mechanism for
these projects to accept funding. Open Journals (http://theoj.org) is a collection of open
source, open access journals, of which JOSS is the flagship publication. Other journals
based on the same model are in varying stages of spinning up.

• Endorsed by and affiliated with OSI. The OSI (opensource.org) is a global nonprofit
organization that protects and promotes open source software, development, and com-
munities by championing software freedom in society through education, collaboration,
and infrastructure, stewarding the Open Source Definition (OSD) and preventing abuse
of the ideals and ethos inherent to the open source movement. In support of this mis-
sion, JOSS requires that the software it publishes uses an OSI-approved license.

• Indexed. JOSS is listed on Sherpa/Romeo, and JOSS papers are indexed by ADS
(http://adsabs.harvard.edu), which in turn is indexed by Google Scholar.

• Connected to other code reviewing systems. For submissions of software that has al-
ready been reviewed under rOpenSci’s rigorous onboarding guidelines,6 JOSS does not
perform further review; the editor in chief fast-tracks such submissions to acceptance.
And this could be extended to work with other trustworthy systems.

JOSS PROCESS
The typical JOSS submission and review process (shown in Figure 1) follows the steps described
below.

1. An author submits an article, including a link to software, to JOSS using the web application
and submission tool. The article is a Markdown file named paper.md, visibly located in the soft-
ware repository (in many cases, placed together with auxiliary files in a paper directory).

2. Following a routine check by a JOSS administrator, a “pre-review” issue is created in the joss-
reviews (https://github.com/openjournals/joss-reviews) GitHub repository. In this pre-review is-
sue, an editor is assigned who then identifies and assigns a suitable reviewer. The editor then
asks the automated bot Whedon to create the main submission review issue.

3. The reviewer conducts the submission review in the issue by working through a checklist of
review items:

• agreement with JOSS policies on conflicts of interest and code of conduct;
• general checks to ensure that the source code is available, an OSI-approved license was

used, the software version in the paper and the repository match, and the submitter is an
author of the software;

85May/June 2018 www.computer.org/cise

 SOFTWARE ENGINEERING

• checks on functionality, including installation and performance claims, if appropriate;
• checks on documentation, which should include a statement of need for the software,

installation instructions, example usage, and documentation of functionality, tests, and
community guidelines; and

• checks on the paper itself, including ensuring that the author list is reasonable, the state-
ment of need is included, and sufficient and well-structured references are present.

The author, reviewer, and editor discuss any questions that arise during the review, and once the
reviewer completes the checks, he or she notifies the submitting author and editor. JOSS reviews
are discussions—in the open within a GitHub issue—between the reviewer(s), author(s), and edi-
tor. Like a true conversation, discussion can go back and forth in minutes or seconds, with all
parties contributing at will. This contrasts with traditional journal reviews, where the process is
merely an exchange between the reviewer(s) and author(s) via the editor, which can take months
for each communication and, in practice, is usually limited to one to three exchanges due to that
delay.7 The reviews are subject to a code of conduct (https://github.com/openjour-
nals/joss/blob/master/CODE_OF_CONDUCT.md); both authors and reviewers must confirm
that they have read and will adhere to this code of conduct, during submission and with their re-
view, respectively.

4. After the review is complete, the editor asks the submitting author to make a permanent ar-
chive of the software (including any changes made during review) with a service such as Zenodo
or Figshare, and to post a link to the archive in the review thread. This link, in the form of a DOI,
is attached to the submission.

5. The editor in chief produces a compiled PDF, updates the JOSS website, deposits Crossref
metadata, and issues a Crossref DOI for the submission.

6. Finally, the editor in chief updates the review issue with the JOSS article DOI and closes the
review. The submission is then accepted into the journal.

Figure 1. The JOSS submission and review flow, including the various status badges that can be
embedded on third-party settings such as GitHub README documentation.8

86May/June 2018 www.computer.org/cise

 COMPUTING IN SCIENCE & ENGINEERING

STATUS AND FUTURE DIRECTIONS
JOSS received its first submission in May 2016, and as of 22 January 2018, has published 206
papers, with 63 more submitted and being reviewed or otherwise processed. The most-cited arti-
cles from JOSS’s first 20 months are Daniel Foreman-Mackey’s article on corner.py9 and Conrad
Sanderson and Ryan Curtin’s article on Armadillo,10 with 129 and 86 citations, respectively, ac-
cording to Google Scholar.

The number of submissions and the fact that we have 19 volunteer editors seem to indicate that
JOSS is satisfying a need. JOSS is not the final answer to the problem we ultimately want to
solve: authors receiving credit directly for their software. They should not need to write papers
about their software to advertise and fit it within the journal system. Nevertheless, our approach
is a good intermediate step to highlight the need for recognition and credit for software.

With general awareness of JOSS in the community increasing, the JOSS editorial team has been
contacted by other journals and publishers interested in our approach. These journals generally
either want to accept software papers in their journals but desire a deeper review of the software,
or want to add software reviews to their editorial process for scientific papers but do not have the
expertise in their reviewer pool. Thus, we are considering allowing other journals to request a
JOSS review as part of their editorial process when software forms a major part of a submission.
One publisher interested in such an approach is the American Astronomical Society (AAS),
which counts the high-profile Astrophysical Journal among its publications.

In addition to potentially collaborating with other journals, we are also in the process of general-
izing the JOSS infrastructure to allow other journals to be easily created with the same tools.
Supported by a small grant from the Alfred P. Sloan Foundation, the core JOSS application
(https://github.com/openjournals/joss) and the Whedon bot (https://github.com/openjour-
nals/whedon-api) are being adapted to support multiple JOSS-like publications. Led by a subset
of the JOSS editorial team, the Journal of Open Source Education will likely be the first new
publication to use the generalized infrastructure.

REFERENCES
1. S. Hettrick et al., “UK Research Software Survey 2014,” dataset, Univ. of Edinburgh

on behalf of Software Sustainability Inst., 2015; doi.org/10.7488/ds/253.
2. U. Nangia and D.S. Katz, “Track 1 Paper: Surveying the US National Postdoctoral

Association Regarding Software Use and Training in Research,” Proc. Workshop on
Sustainable Software for Science: Practice and Experiences (WSSSPE 5.1), 2017;
doi.org/10.6084/m9.figshare.5328442.

3. U. Nangia and D.S. Katz, “Understanding Software in Research: Initial Results from
Examining Nature and a Call for Collaboration,” Proc. Workshop on Sustainable
Software for Science: Practice and Experiences (WSSSPE 5.2), 2017;
doi.org/10.1109/eScience.2017.78.

4. K.E. Niemeyer, A.M. Smith, and D.S. Katz, “The Challenge and Promise of Software
Citation for Credit, Identification, Discovery, and Reuse,” J. Data and Information
Quality, vol. 7, no. 4, 2016, p. 16.

5. A.M. Smith et al., “Journal of Open Source Software (JOSS): Design and First-Year
Review,” PeerJ Computer Science, vol. 4, 2018, p. e7.

6. K. Ram,, N. Ross, and S. Chamberlain, “Lightning Talk: A Model for Peer Review
and Onboarding Research Software,” Proc. Fourth Workshop on Sustainable Software
for Science: Practice and Experiences (WSSSPE 4), 2016; ceur-ws.org/Vol-
1686/WSSSPE4_paper_13.pdf.

7. J.P. Tennant et al., “A Multi-Disciplinary Perspective on Emergent and Future
Innovations in Peer Review [version 2; referees: 2 approved with reservations],”
F1000Research, vol. 6, no. 1151, 2017; doi.org/10.12688/f1000research.12037.2.

8. K.E. Niemeyer, “JOSS Publication Flowchart,” Figshare, 2017;
doi.org/10.6084/m9.figshare.5147773.v1.

87May/June 2018 www.computer.org/cise

 SOFTWARE ENGINEERING

9. D. Foreman-Mackey, “corner.py: Scatterplot Matrices in Python,” J. Open Source
Software, vol. 1, no. 2, 2016, p. 24.

10. C. Sanderson and R. Curtin, “Armadillo: A Template-based C++ Library for Linear
Algebra,” J. Open Source Software, vol. 1, no. 2, 2016, p. 26.

ABOUT THE AUTHORS
Daniel S. Katz is the assistant director for Scientific Software and Applications at the Na-
tional Center for Supercomputing Applications, and a research associate professor in the
Departments of Computer Science and Electrical and Computer Engineering and the School
of Information Sciences at the University of Illinois, Urbana–Champaign. His research in-
terests include applications, algorithms, fault tolerance, programming in parallel and distrib-
uted computing, citation and credit mechanisms and practices associated with software and
data, organization and community practices for collaboration, and career paths for compu-
ting researchers. Katz received a PhD in electrical engineering from Northwestern Univer-
sity. Contact him at d.katz@ieee.org.

Kyle E. Niemeyer is an assistant professor of mechanical engineering in the School of Me-
chanical, Industrial, and Manufacturing Engineering at Oregon State University. His re-
search interests include the development of advanced numerical methods for modeling of
combustion and reactive flows, and computational modeling of multiphysics flows for ap-
plications in aerospace, transportation, and energy systems. Niemeyer received a PhD in
mechanical engineering from Case Western Reserve University. Contact him at kyle.nie-
meyer@oregonstate.edu.

Arfon M. Smith is the head of the Data Science Mission Office at the Space Telescope Sci-
ence Institute. His research interests include academic credit models, crowd-sourcing/citi-
zen science, interstellar medium, open source software, and scholarly publishing. Smith
received a PhD in astrochemistry from the University of Nottingham. Contact him at ar-
fon@stsci.edu.

88May/June 2018 www.computer.org/cise

